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Abstract In this article, we consider a parametric vector quasiequilibrium problem in
topological vector spaces. Sufficient conditions for solution maps to be lower and Hausdorff
lower semicontinuous, upper semicontinuous and continuous are established. Our results
improve recent existing ones in the literature.
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1 Introduction

Throughout the paper, unless otherwise specified, let X, Y and Λ be Hausdorff topological
vector spaces. Let A ⊆ X be nonempty. Let K : A × Λ → 2A, � : A × Λ → 2Y be multi-
functions and f : A × A × Λ → Y be a mapping. Assume that the values of � are closed
with nonempty interiors different from Y . For λ ∈ Λ consider the following parametric
quasiequilibrium problem
(QEP) Find x̄ ∈ K (x̄, λ) such that, for all y ∈ K (x̄, λ),

f (x̄, y, λ) ∈ �(x̄, λ).
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This problem setting encompasses many important problems as special cases, see Sect. 5.
Semicontinuity and continuity properties of solutions have been investigated even in more
general models like inclusion problems [7,10], variational relation problems [16], or in
more general settings with set-valued mappings for quasiequilibrium problems [2,5,8,9].
However, to get stability properties, assumptions imposed for such general models may
become too restrictive when applied to the above problem (QEP). Semicontinuity condi-
tions for multivalued mapping f become strong continuity requirements for single-valued
f . While some (generalized) convexity assumptions do not have counterparts for the sin-
gle-valued case. This observation motivates the aim of this paper, which is to establish
sufficient conditions for solution sets of the above problem (QEP) to be semicontinuous
or continuous with respect to parameter λ under relaxed assumptions about continuity-
related and generalized convexity of the (single-valued) mapping f . Several of our new
assumptions may look rather technical but are in fact easy to be checked, and what is more
important, easier to be fulfilled in practical problems. Our results improve the correspond-
ing ones of [13,14,17–20] when applied to the particular cases studied in these works.
Note that parametric problems in the literature often involve several parameters (perturbing
constraints and f independently). However, all these parameters can be considered as one
of a suitable defined product space. Hence we include only one parameter in our problem
setting.

The structure of our paper is as follows. In the remaining part of this section we recall
definitions for later uses. Section 2 is devoted to upper semicontinuity while Sect. 3 deals
with lower and Hausdorff lower semicontinuities. Conditions for continuity of solution maps
of (QEP) are provided in the next Sect. 4. The last Sect. 5 concerns several particular cases
as examples, where we derive consequences of our main results.

The following definitions for set-valued maps can be seen in, e.g., [12]. For topological
spaces X, Y and set-valued mapping Q : X → 2Y , recall that Q is called upper semicontin-
uous (usc in short; lower semicontinuous, lsc, respectively) at x0 if for open subset U of Y
with Q(x0) ⊆ U (Q(x0) ∩ U �= ∅), there is a neighborhood N of x0 such that Q(N ) ⊆ U
(∀x ∈ N , Q(x) ∩ U �= ∅). An equivalent formulation for lower semicontinuity is that: Q
is lsc at x0 if, for all xα → x0 and y ∈ Q(x0), there exists yα ∈ Q(xα) such that yα → y.
Since we largely use this equivalent statement in the sequel, as a referee suggested we give
a direct proof here. Let xα → x0 and y ∈ Q(x0). For any open neighborhood U of y, as
Q(x0) ∩ U �= ∅, there is a neighborhood N of x0 such that, ∀x ∈ N , Q(x) ∩ U �= ∅. Take
xα ∈ N and yα ∈ Q(xα) ∩ U . Since U is arbitrary, we can do this such that yα → y. For
the converse, suppose ad absurdum the existence of an open subset U with Q(x0) ∩ U �= ∅
such that each neighborhood N of x0 contains a point xN with Q(xN ) ∩ U = ∅. We can
choose such neighborhoods N such that the corresponding xN form a net converging to x0.
By the assumption, there is a corresponding net {yN } with yN ∈ Q(xN ) and yN → y, which
contradicts the fact Q(xN ) ∩ U = ∅.

Q is said to be continuous at x0 if it is both lsc and usc at x0. When Y is a topological
vector space, Q is said to be Hausdorff upper semicontinuous (H-usc in short; Hausdorff
lower semicontinuous, H-lsc, respectively) at x0 if, for each neighborhood B of the ori-
gin in Y , there exists a neighborhood N of x0 such that, Q(x) ⊆ Q(x0) + B,∀x ∈ N
(Q(x0) ⊆ Q(x) + B,∀x ∈ N ). Q is termed closed at x0 if, for any net {(xα, yα)} ⊆
graphQ := {(x, y) ∈ X × Y | y ∈ Q(x)} with (xα, yα) → (x0, y0), we have y0 ∈ Q(x0).
We say that Q satisfies a certain property in a subset A ⊆ X if Q satisfies it at every point of
A. If A = domQ := {x | Q(x) �= ∅} we omit “in domQ” in the saying.

For a set-valued map Q : X → 2Y between two linear spaces, Q is said to be concave on
a convex subset A ⊆ X if, for each x1, x2 ∈ A and t ∈ [0, 1],
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Q((1 − t)x1 + t x2) ⊆ t Q(x1) + (1 − t)Q(x2).

Denote R = (−∞,+∞), R+ = [0,+∞) and R− = −R+. For a subset A of X , intA, clA
and bdA stand for the interior, closure and boundary of A, respectively. For X, Y , �, F as in
(QEP) and θ ∈ Y , we will use the following level-set types:

levθ.� := {(x, y, λ) | f (x, y, λ) ∈ θ + �(x, λ)},
levθ.�(.,λ0) := {(x, y) | f (x, y, λ0) ∈ θ + �(x, λ0)}.

2 Upper semicontinuity of solution maps

In this section, we discuss upper semicontinuity of solution maps to our parametric quasi-
equilibrium problem (QEP) under relaxed conditions. To this end, we propose generalized
convexity and monotonicity properties as follows.

Definition 2.1 Let g : X × Z → Y , � : X × Z → 2Y , where � has values with non-
empty interiors. g is called generalized �-concave (with respect to the second variable) in
a convex set A ⊆ Z , if for each x ∈ X and z1, z2 ∈ A, from g(x, z1) ∈ �(x, z1) and
g(x, z2) ∈ int �(x, z2), it follows that, for all t ∈ (0, 1),

g(x, (1 − t)z1 + t z2) ∈ int �(x, (1 − t)x1 + t z2).

Definition 2.2 Let g : X × X → Y be a function and � : X → 2Y be a multifunction with
the values having nonempty interiors.

(i) g is called �-quasimonotone in A ⊆ X if, for all x �= y in A,

[g(x, y) ∈ int �(x)] 	⇒ [g(y, x) /∈ int �(y)].
(ii) g is termed �-pseudomonotone in A ⊆ X if, for all x �= y in A,

[g(x, y) ∈ �(x)] 	⇒ [g(y, x) /∈ int �(y)].
In dealing with particular cases of (QEP) in Sect. 5, we need the following classical defi-

nition, which is obtained from Definition 2.2 by setting Y = R,�(x) ≡ R+ and g(x, y) =
〈b(x), y − x〉.
Definition 2.3 (See e.g., [23]) Let X be a normed space, A ⊆ X be a nonempty subset and
b : A → X∗ be a mapping.

(a) b is said to be quasimonotone in A, if for each x, y in A,

[〈b(x), y − x〉 > 0] 	⇒ [〈b(y), x − y〉 ≤ 0].
(b) b is said to be pseudomonotone in A, if for each x, y in A,

[〈b(x), y − x〉 ≥ 0] 	⇒ [〈b(y), x − y〉 ≤ 0].
In the sequel let, for λ ∈ �,

E(λ) = {x ∈ A | x ∈ K (x, λ)}
and S(λ) be the solution set of problem (QEP) corresponding to λ. Since the existence of
solutions for (QEP) has been intensively studied in the literature, we focus on the stability
study, assuming always that S(λ) �= ∅.
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Theorem 2.1 For problem (QEP) assume that

(i) E is usc at λ0, E(λ0) is compact and K is lsc in A × Λ;
(i i) lev0.�(.,λ0) f (., ., λ0) is closed in K (A,Λ) × K (A,Λ);

(i i i) for all x, y in K (A,Λ), f (x, y, .) is Y\�(x, .)- usc at λ0, uniformly with respect to
x, y in the sense that, if f (x, y, λ0) ∈ Y\�(x, λ0), there is a neighborhood N of λ0,
not depending on x, y, such that

f (x, y, λ) ⊆ Y\�(x, λ), ∀λ ∈ N .

Then the solution map S is usc at λ0.

Proof Suppose that S is not usc at λ0, i.e., there is an open superset U of S(λ0) such that there
are nets λα → λ0 and xα ∈ S(λα) with xα /∈ U for all α. By the upper semicontinuity of E
and the compactness of E(λ0) one can assume that xα → x0, for some x0 ∈ E(λ0). Suppose
there is y0 ∈ K (x0, λ0) such that f (x0, y0, λ0) ∈ Y\�(x0, λ0). The lower semicontinuity of
K in turn shows the existence of yα ∈ K (xα, λα) such that yα → y0. Condition (ii) allows
one to assume that

f (xα, yα, λ0) ∈ Y\�(xα, λ0).

Since f (x, y, .) is Y\�(x, .)-usc at λ0, there is a neighborhood N of λ0 such that

f (xα, yα, λ) ⊆ Y\�(xα, λ), ∀λ ∈ N ,

which is impossible as xα ∈ S(λα) for all α. Thus, x0 ∈ S(λ0) ⊆ U , which is again a
contradiction, since xα /∈ U for all α. ��
Remark 2.1 When K (x, λ) ≡ K and �(x, λ) ≡ �, it is not hard to check that the closedness
assumption (ii) for f (., ., λ0) can be relaxed to that for f (., y, λ0), for all y ∈ K , and the
uniformity with respect to x, y ∈ K in (iii) can be weakened to the uniformity with respect to
x ∈ K . Therefore, Theorem 2.1 improves Theorem 3.1 of [13] and Theorem 2.1 of [14], since
our assumptions are imposed only in K (not globally in A as in the mentioned theorems) and
our semicontinuity assumption in (iii) is weaker than the counterpart in these theorems.

Assumption (iii) of Theorem 2.1 is essential as shown by the following example.

Example 2.1 Let X = A = Y = l2,Λ = [0, 1], �(x, λ) = {y ∈ l2 | yk ≥ 0, k =
1, 2, . . .}, K (x, λ) = {

y ∈ l2 | 0 ≤ yn ≤ 1
n

}
, λ0 = 0 and

f (x, y, λ) =
{

x − y, if λ = 0,

(x1(x1 − y1), x2(x2 − y2), . . .), otherwise,

where l2 = {x = (x1, x2, . . .) | ∑∞
n=1 x2

n < +∞}. Then (i) is satisfied as K (x, λ) is
constant and compact. (ii) is fulfilled since f (., ., 0) is continuous. It is clear that S(0) ={(

1, 1
2 , . . . , 1

n , . . .
)}

and S(λ) = {
(0, 0, . . .),

(
1, 1

2 , . . . , 1
n , . . .

)}
and hence S is not usc

at 0. The reason is that assumption (iii) is violated. Indeed, taking x = (0, 0, . . .), y =( 1
2 , 1

4 , . . . , 1
2n , . . .

)
, one has, for λ �= 0,

f (x, y, 0) =
(

−1

2
,−1

4
, . . . ,− 1

2n
, . . .

)
∈ l2\�,

f (x, y, λ) = (0, 0, . . .) /∈ l2\�.

Although assumption (iii) cannot be dispensed within the statement, we can replace it as
follows.
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Theorem 2.2 Assume that

(i) E is usc at λ0, E(λ0) is compact and K is lsc in A × Λ;
(i i ′) lev0.� f is closed in K (A,Λ) × K (A,Λ) × {λ0}.

Then the solution map S of (QEP) is usc at λ0.

Proof Reasoning ad absurdum, suppose the existence of an open subset U ⊇ S(λ0) and a net
{(xα, λα)} converging to (x0, λ0) such that xα ∈ S(λα)\U for all α. If x0 /∈ S(λ0), there is
y0 ∈ K (x0, λ0) with f (x0, y0, λ0) ∈ Y\�(x0, λ0). Since K is lsc at (x0, λ0), there exists a net
{yα} with yα ∈ K (xα, λα) and yα → y0. As xα ∈ S(λα), f (xα, yα, λα) ∈ �(xα, λα). From
assumption (ii′) we have f (x0, y0, λ0) ∈ �(x0, λ0), a contradiction. If x0 ∈ S(λ0) ⊆ U , one
has another contradiction, as xα /∈ U for all α. ��
Remark 2.2 For the special case of our (QEP), where �(x, λ) = Y\ − intC(x, λ), C(x, λ)

being a convex cone, Theorem 4.1 of [19] has the same conclusion as that of Theorem 2.2.
Assumption (v) in this theorem coincides with (ii′) in Theorem 2.2. It is assumed in (i)–(iv)
of this theorem that A is compact, K is usc and compact-valued. These assumptions are
easily seen to imply our assumptions that E is usc at λ0 and E(λ0) is compact. So with
the additional condition that K is lsc in A × � (which is not imposed in this Theorem 4.1),
the assumptions of this theorem are stronger than those of our Theorem 2.2. The following
example demonstrates that the lower semicontinuity of K needs to be added to Theorem 4.1
of [19].

Example 2.2 Let X = Y = R, A = [−1, 1],Λ = [0, 1], �(x, λ) = R+,λ0 = 0,

K (x, λ) =
{ {−1, 0, 1}, if λ = 0,

{0, 1}, otherwise,

and f (x, y, λ) = x + y + λ. It is clear that E(.) = K (.) is usc at 0 (K does not depend on
x), E(0) is compact. Condition (ii′) holds since f is continuous. The assumptions of The-
orem 4.1 of [19] are easily seen to be fulfilled. But S(0) = {1}, S(λ) = {0, 1},∀λ ∈ (0, 1]
and so S is not usc at 0. The reason is that K is not lsc. (As a referee required, we note that
the argument in [19] that, for arbitrary open neighborhood U of y0 ∈ K (x0, λ0), one gets
yα ∈ K (xα, λα) with (xα, λα) → (x0, λ0) such that yα ∈ U , is not adequate if K is not lsc
at (x0, λ0).)

The following example shows a case where the assumed compactness in Theorem 4.1 of
[19] is violated but the assumptions of Theorem 2.2 are fulfilled, and in fact S is usc.

Example 2.3 Let X = Y = R,Λ = [0, 1], A = [0, 2), �(x, λ) = R+, K (x, λ) = (x −
λ − 1, λ] ∩ A, λ0 = 0 and f (x, y, λ) = x − y. Then it is evident that the assumptions of
Theorem 2.2 are fulfilled. A direct calculation gives S(λ) = {λ}, which is usc, although A
and the values of K are not compact.

We can modify the closedness assumptions of Theorems 2.1 and 2.2, using generalized
pseudomonotonicity and concavity as follows.

Theorem 2.3 For (QEP) let K (x, λ0) be convex for x ∈ A and the following conditions
hold.

(i) E is usc at λ0, E(λ0) is compact and K is lsc in A × Λ.
(i i ′) lev0.(Y\int�) f is closed in K (A,Λ) × K (A,Λ) × {λ0} and lev0.�(.,λ0) f (., y, λ0) is

closed for all y ∈ K (A, λ0).
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(i i i) There is a neighborhood U of λ0 such that, ∀λ ∈ U (λ0), f (., ., λ) is �(., λ)-pseudo-
monotone in K (A, λ) × K (A, λ).

(iv) For each x ∈ K (A, λ0), f (x, ., λ0) is generalized Y\int�(x, λ0)-concave in K (x, λ0)

and f (x, x, λ0) ∈ �(x, λ0).

Then the solution map S is usc at λ0.

Proof We first prove that S is closed at λ0 by considering λα → λ0 and xα ∈ S(λα) with
xα → x0. For each y ∈ K (x0, λ0), yα ∈ K (xα, λα) exists such that yα → y, since K is lsc
at (x0, λ0). By the pseudomonotonicity of f (., ., λα) one has

f (yα, xα, λα) ∈ Y\int�(yα, λα).

The closedness of lev0.(Y\int�) f implies that

f (y, x0, λ0) ∈ Y\int�(y, λ0). (1)

We claim that f (x0, y0, λ0) ∈ �(x0, λ0) for each y0 ∈ K (x0, λ0). As x0 ∈ K (x0, λ0),
one has yt = (1 − t)x0 + t y0 ∈ K (x0, λ0), for t ∈ (0, 1). Suppose f (yt , y0, λ0) ∈
Y\�(yt , λ0). If f (yt , x0, λ0) ∈ Y\�(yt , λ0), from the assumed Y\int�(yt , λ0)-concavity,
one gets f (yt , yt , λ0)∈Y\�(yt , λ0), which is impossible. While if f (yt , x0, λ0) ∈ �(yt , λ0),
(1) implies that f (yt , x0, λ0)∈bd�(yt , λ0)=bd(Y\int�(yt , λ0))⊆Y\int�(yt , λ0). The gen-
eralized Y\int�(yt , λ0)-concavity yields f (yt , yt , λ0) ∈ Y\�(yt , λ0), a contradiction. So
f (yt , y0, λ0) ∈ �(yt , λ0). Passing to the limit as t → 0+ yields f (x0, y0, λ0) ∈ �(x0, λ0),
since lev0.�(.,λ0) f (., y0, λ0) is closed. Hence x0 ∈ S(λ0) and then S is closed at λ0.

Now we show that S is usc at λ0. Suppose an open superset U of S(λ0) exists such that
there are nets {λα} converging to λ0 and xα ∈ S(λα) with xα /∈ U for all α. By the upper
semicontinuity of E and the compactness of E(λ0) one can assume that xα → x0, for some
x0 ∈ E(λ0). Since S is closed at λ0, we have x0 ∈ S(λ0) ⊆ U , which is impossible since
xα /∈ U for all α. ��

The level set lev0.(Y\int�) f is “opposite” to the other level sets involved in Theorems 2.1–
2.3. The following example ensures that its assumed closedness cannot be dropped.

Example 2.4 Let X = Y = A = R, Λ = [0, 1], �(x, λ) = R+, K (x, λ) = [0, 1], λ0 = 0
and

f (x, y, λ) =
{

x − y, if λ = 0,

xy(x − y), otherwise.

Then assumption (i) is satisfied. Since f (x, y, 0) = x − y, lev0.R+ f (., y, 0) is closed.
It is easy to see that f (., ., λ) is R+ pseudomonotone in [0, 1] × [0, 1] and hence (iii)
holds. We check (iv). If f (x, y, 0) ≤ 0 and f (x, z, 0) < 0, then x ≤ y and x < z. So
f (x, (1 − t)y + t z, 0) = x − (1 − t)y − t z < 0, for all t ∈ (0, 1), i.e., f (x, ., 0) is
generalized R−-concave. The assumptions of Theorem 2.3 are fulfilled except the closedness
of lev0.R− f . It is clear that S(0) = {1}, S(λ) = {0, 1},∀λ ∈ (0, 1], and hence S is not usc
at 0. The reason is that lev0.R− f is not closed. (To see this let xn = 1, yn = 0 and λn = 1

n .
Then (xn, yn, λn) → (1, 0, 0) and f (xn, yn, λn) = 0, but f (1, 0, 0) = 1 > 0.)

3 Lower semicontinuity of solution maps

For investigation of lower semicontinuity of solution maps to (QEP), as an auxiliary problem
we consider the following one:

123



J Glob Optim (2010) 46:247–259 253

(QEP1) Find x̄ ∈ K (x̄, λ) such that, for all y ∈ K (x̄, λ),

f (x̄, y, λ) ∈ int�(x̄, λ),

where X,Λ, A, K , � and f are as in Sect. 1. Let S1(λ) be the solution set of (QEP1) corre-
sponding to λ. Clearly S1(λ) ⊆ S(λ).

Theorem 3.1 Assume that S1(λ) �= ∅ and that

(i) E is lsc at λ0 and E(λ0) is convex; K is usc and compact-valued in E(λ0) × {λ0};
K (., λ0) is concave in E(λ0);

(i i) lev0.Y\int� f is closed in K (A,Λ) × K (A,Λ) × {λ0};
(i i i) f (., ., λ0) is generalized �(., λ0)-concave in E(λ0) × K (A, λ0).

Then the solution map S of (QEP) is lsc at λ0.

Proof We start by proving that S1 is lsc at λ0. Suppose to the contrary that S1 is not lsc at λ0,
i.e., there are x0 ∈ S1(λ0) and net {λα} ⊆ Λ converging to λ0 such that, for all xα ∈ S1(λα),

the net {xα} does not converge to x0. Since E is lsc at λ0, there is x̄α ∈ E(λα) with x̄α → x0.
By the above contradiction assumption, there must be a subnet {x̄β} such that, for all β,
x̄β /∈ S1(λβ), i.e., for some yβ ∈ K (x̄β, λβ),

f (x̄β, yβ, λβ) ∈ Y\int�(x̄β, λβ). (2)

As K is usc at (x0, λ0) and K (x0, λ0) is compact one has y0 ∈ K (x0, λ0) such that
yβ → y0 (taking a subnet if necessary). By assumption (ii), (2) yields that f (x0, y0, λ0) ∈
Y\int�(x0, λ0), which is impossible since x0 ∈ S1(λ0).

Now let us check that

S(λ0) ⊆ clS1(λ0). (3)

Let x̄ ∈ S(λ0), x̄1 ∈ S1(λ0) and xt = (1 − t)x̄ + t x̄1 with t ∈ (0, 1). Since K (., λ0) is
concave, for all y ∈ K (xt , λ0), there exist ȳ ∈ K (x̄, λ0) and ȳ1 ∈ K (x̄1, λ0) such that y =
(1− t)ȳ + t ȳ1. Since f (., ., λ0) is generalized �(., λ0)-concave, f (xt , y, λ0) ∈ int�(xt , λ0),
i.e., xt ∈ S1(λ0). Therefore, (3) holds. By the lower semicontinuity of S1 at λ0 we have

S(λ0) ⊆ clS1(λ0) ⊆ lim inf S1(λα) ⊆ lim inf S(λα),

i.e., S is lsc at λ0. ��
The following example makes it clear that the concavity of f (., ., λ0) is essential.

Example 3.1 Let X = Y = A = R,Λ=[0, 1], �(x, λ)= R+, K (x, λ) = [λ, λ + 3], λ0 = 0
and f (x, y, λ) = x2 − (λ + 1)x . Then, it is easy to see that assumptions (i) and (ii) of
Theorem 3.1 are satisfied. But S(0) = {0} ∪ [1, 3] and S(λ) = [λ + 1, λ + 3],∀λ ∈ (0, 1],
and hence S(.) is not lsc at 0. The reason is that (iii) is violated. Indeed, let x1 = 0, x2 = 3

2 ∈
E(0) = [0, 3]. Then, ∀y ∈ K (A, 0) = [0, 3], we have f (x1, y, 0) = 0, f (x2, y, 0) = 3

4 , but

f

(
1

2
x1 + 1

2
x2, y, 0

)
= − 3

16
.

Remark 3.1 In Theorem 5.1 of [19] the same conclusion as Theorem 3.1 was proved in
another way. Its assumptions (i)–(v) derive (i) of Theorem 3.1, assumptions (vi), (vii) coin-
cide with (ii), (iii) of Theorem 3.1. Theorem 3.1 slightly improves Theorem 5.1 of [19], since
no convexity of the values of K is imposed.
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We now proceed to Hausdorff lower semicontinuity.

Theorem 3.2 Impose the assumptions of Theorem3.1 and the following additional condi-
tions:

(v) K (., λ0) is lsc in E(λ0) and E(λ0) is compact;
(vi) lev0.�(.,λ0) f (., ., λ0) is closed in K (A,Λ) × K (A,Λ).

Then S is Hausdorff lower semicontinuous at λ0.

Proof We first show that S(λ0) is closed. Let xα ∈ S(λ0) (⊆ E(λ0)) be such that xα → x0

in E(λ0). Suppose there exists y0 ∈ K (x0, λ0) such that

f (x0, y0, λ0) ∈ Y\�(x0, λ0). (4)

Since K (., λ0) is lsc at x0, there is yα ∈ K (xα, λ0) with yα → y0. As xα ∈ S(λ0), we have

f (xα, yα, λ0) ∈ �(xα, λ0). (5)

Assumption (vi) shows a contradiction between (4) and (5). Thus, S(λ0) is closed and then
compact.

Now suppose S is not Hlsc at λ0, i.e., there are a neighborhood B of the origin in X and
λα → λ0 such that, for all α, there exists x0α ∈ S(λ0)\(S(λα)+ B). Since S(λ0) is compact,
we can assume that x0α → x0 for some x0 ∈ S(λ0). Then there are α1, a neighborhood B1

of 0 in X with B1 + B1 ⊆ B and bα ∈ B1 such that x0α = x0 + bα , for all α ≥ α1. Since S is
lsc at λ0, there is zα ∈ S(λα) with zα → x0 and then there is α2 such that, for each α ≥ α2,
b′
α ∈ B1 exists with zα = x0 − b′

α . Consequently, for all α ≥ α0 = max{α1, α2},
x0α = x0 + bα = zα + b′

α + bα ∈ zα + B.

This is impossible due to the fact that x0α /∈ S(λα) + B. Thus, S is Hlsc at λ0. ��

The following example shows that the assumed compactness in (v) is essential.

Example 3.2 Let X = A = R
2, Y = R,Λ = [0, 1], �(x, λ) = R+, λ0 = 0 and, for

x = (x1, x2) ∈ R
2, K (x, λ) = {(x1, λx1)} and f (x, y, λ) = 1 + λ. Then E(λ) = {(x1, x2) |

x2 = λx1}. Clearly the assumptions of Theorem 3.2, but the compactness of E(λ0), are sat-
isfied. Direct computations give S(λ) = {(x1, x2) ∈ R

2 | x2 = λx1} and then S is not Hlsc
at 0 (although S is lsc at 0).

4 Continuity of solution maps

We can combine the results in Sect. 2 and Theorem 3.1 to derive sufficient conditions for
continuity of solution maps of (QEP). In this section we develop some conditions without
concavity assumptions.

Theorem 4.1 Impose the assumptions of either of Theorems2.1–2.3. Assume further that

(a) f (., ., λ0) is �(., λ0)-quasimonotone in K (A, λ0) × K (A, λ0);
(b) for each x ∈ S(λ0) and each y ∈ S(λ0)\{x}, f (x, y, λ0) ∈ int�(x, λ0).

Then S is continuous at λ0.
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Proof First let the assumptions of Theorem 2.1 (or 2.2) be satisfied. It suffices to prove that S
is lsc at λ0. Suppose to the contrary that there are a net {λα} converging to λ0 and x0 ∈ S(λ0)

such that xα ∈ S(λα), but the net {xα} does not converge to x0. Since E is usc and E(λ0) is
compact, we can assume that xα → x̄0 for some x̄0 ∈ E(λ0). From the proof of Theorem 2.1
(or 2.2), we see that x̄0 ∈ S(λ0). By the contradiction assumption we have x̄0 �= x0. Due to
assumption (b) one has

f (x̄0, x0, λ0) ∈ int�(x̄0, λ0) and f (x0, x̄0, λ0) ∈ int�(x0, λ0),

which is impossible since f (., ., λ0) is �(., λ0)-quasimonotone.
The case, where the assumptions of Theorem 2.3 are fulfilled, can be checked similarly.

��
Theorem 4.2 Let the assumptions of either of Theorems 2.1–2.3 be fulfilled and the following
conditions hold

(a′) f (., ., λ0) is �(., λ0)-pseudomonotone in K (A, λ0) × K (A, λ0);
(b′) if f (x, y, λ0) ∈ bd�(x, λ0) then x = y;
(c′) f (x, x̄, λ0) ∈ �(x, λ0) for all x, x̄ in S(λ0).

Then S is continuous at λ0.

Proof We retain the first part of the proof of Theorem 4.1, including a contradiction argument
with the end that x̄0 �= x0. (c′) implies that f (x0, x̄0, λ0) ∈ �(x0, λ0) and f (x̄0, x0, λ0) ∈
�(x̄0, λ0). By (a′), one has f (x̄0, x0, λ0) ∈ Y\int�(x̄0, λ0). Hence f (x̄0, x0, λ0) ∈ bd
�(x̄0, λ0). Assumption (b′) now yields a contradiction that x̄0 = x0. ��

5 Particular cases

Since equilibrium problems contain many problems as special cases, including variational
inequalities, optimization problems, fixed-point and coincidence-point problems, comple-
mentarity problems, Nash equilibrium problems, etc, we can derive from the results of
Sects. 2–4 consequences for such special cases. In this section we discuss only some corol-
laries for quasivariational inequalities and traffic network problems as examples.

5.1 Quasivariational inequalities

Let X, A,Λ, K be as in Sect. 1, X∗ be the dual space of X and T : X × Λ → X∗. We
consider the following parametric quasivariational inequality, for each λ ∈ Λ,
(QVI) Find x̄ ∈ K (x̄, λ) such that, for all y ∈ K (x̄, λ),

〈T (y, λ), y − x̄〉 ≥ 0,

where 〈., .〉 denotes the pairing between X and X∗.
To convert (QVI) to a special case of (QEP) set Y = R, �(x, λ) = R+ and f (x, y, µ) =

〈T (y, µ), y − x〉. Consequently, the following result is immediate from Theorem 2.1.

Corollary 5.1 Assume for (QVI) that

(i) E is usc at λ0, E(λ0) is compact and K is lsc in K (A,Λ) × K (A,Λ);
(i i) the set {(x, y) ∈ A × A | 〈T (y, λ0), y − x〉 ≥ 0} is closed in K (A,Λ) × K (A,Λ);

(i i i) for all x, y in K (A,Λ), the function λ �→ 〈T (y, λ), y − x〉 is (−∞, 0)-usc at λ0.

Then the solution map S is usc at λ0.
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Remark 5.1 (i) By Theorem 2.2, Corollary 5.1 is still valid if we replace assumptions (ii)
and (iii) by (i i i ′) The set {(x, y, λ) | 〈T (y, λ), y − x〉 ≥ 0} is closed in K (A,Λ) ×
K (A,Λ) × {λ0}.

(i i) Corollary 5.1 together with the above Remark 5.1(i) include Theorems 2.2 and 2.3 of
[17], Theorems 4.1 and 4.3 of [18].

(i i i) Similarly, we can obtain direct corollaries of Theorems 3.1, 3.2 and these results are
new for (QVI), as far as we know.

5.2 Traffic network problems

The notion of equilibrium flows for transportation network problems was introduced in War-
drop [22] together with a basic traffic network principle. Since then, traffic network problems
have raised a great interest and have been much developed in both theory and methodology
view points. Variational approaches to such traffic problems began with Smith [21], where
it was proved that the Wardrop equilibrium can be expressed in terms of variational inequal-
ities. In [1,3,4,6,11] Hölder continuity of solution maps to such parametric elastic traffic
problems was considered. In this subsection, utilizing results of Sect. 2 we investigate conti-
nuity properties of solutions of the following elastic traffic problem, which was considered
by many authors, see e.g., [7,10,17] and references therein.

Let N be the set of nodes, L be that of links (or arcs), W = (W1, . . . , Wl) be the set
of origin-destination pairs (O/D pairs in short). Assume that the pair W j , j = 1, . . . , l, is
connected by a set Pj of paths and Pj contains r j ≥ 1 paths. Let F = (F1, . . . , Fm) be the
path vector flow, where m = r1 + . . . + rl . Assume that the capacity restriction is

F ∈ A := {F ∈ Rm : 0 ≤ γs ≤ Fs ≤ �s, s = 1, . . . , m},
where γs and �s are given real numbers. Assume further that the travel cost on the path flow
Fs, s = 1, . . . , m, depends on the whole path vector flow F and is Ts(F) ≥ 0. Then we have
the path cost vector T (F) = (T1(F), . . . , Tm(F)).

Following Wardrop [22] a path vector flow H is said to be an equilibrium vector flow if
∀W j , ∀p ∈ Pj , ∀s ∈ Pj ,

[Tp(H) < Ts(H)] 	⇒ [Hs = γs or Hp = �p].
Now assume that a perturbation on the traffic is expressed by parameter c of a metric space
C . Assume further that a travel demand g j of the O/D pair W j depends on c ∈ C and also
on the equilibrium vector flow H . Denote g = (g1, . . . , gl) and set

φ js =
{

1, if s ∈ Pj ,

0, if s /∈ Pj ,

φ = {φ js}, j = 1, . . . , l; s = 1, . . . , m.

Then the path vector flows meeting the travel demands are called the feasible path vector
flows and form the constraint set

K (H, c) = {F ∈ A | φF = g(H, c)}.
φ is called an O/D pair-path incidence matrix. Assume further that the path costs are also per-
turbed, i.e., depend on a perturbation parameter b of a metric space B: Ts(F, b), s = 1, . . . , m.
Note that the “path model” (where the variables are path flows) we use here does not need
the additivity of the travel cost as in so-called arc models.

Our traffic network problem is equivalent to a quasivariational inequality as follows.
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Lemma 5.2 (See [15,21]) A path vector flow H ∈ K (H, a) is an equilibrium flow if and
only if it is a solution of the following quasivariational inequality

(TNP) Find H ∈ K (H, c) such that, for all F ∈ K (H, c),

〈T (H, b), F − H〉 ≥ 0.

We need the following simple assertions

Lemma 5.3 (See [1, Lemma 1]) Let A be an m × n matrix, a1 and a2 be given vectors in
Rm. The solution set of the linear equality Ax = ai , for i = 1, 2, is denoted by Si . Then, there
exists δ = δ(A) > 0 such that for each x1 ∈ S1 there exists x2 ∈ S2 satisfying

‖x1 − x2‖ ≤ δ‖a1 − a2‖.
Lemma 5.4 Assume that g is continuous at (H0, c0). Then K is continuous at (H0, c0) and
convex, compact-valued.

Proof Consider the system

φF = g(H0, c0),

φF = g(H, c).

By Lemma 5.3, there exists δ > 0 such that, for each F0 ∈ K (H0, c0), there exists F ∈
K (H, c) satisfying

‖F − F0‖ ≤ δ‖g(H, c) − g(H0, c0)‖.
Since g is continuous at (H0, c0), K is lsc at (H0, c0). Suppose K is not usc at (H0, c0), i.e.,
there are an open superset U of K (H0, c0) and a sequence {(Hn, cn)} converging to (H0, c0)

such that, for each n, there exists Fn ∈ K (Hn, cn)\U . By the compactness of A, we can
assume that Fn → F0. According to Lemma 5.3, there is F0

n ∈ K (H0, c0) such that

‖Fn − F0
n ‖ ≤ δ‖g(Hn, cn) − g(H0, c0)‖.

Consequently, F0
n → F0. Since φF0

n = g(H0, c0), we have φF0 = g(H0, c0), i.e., F0 ∈
K (H0, c0) ⊆ U , a contradiction. ��

Setting X = R
m,Λ = C × B and, for each λ = (c, b) ∈ Λ, K1(H, λ) = K (H, c) and

f (x, y, λ) = 〈T (x, b), y − x〉. Then (TNP) becomes a special case of (QEP).

Corollary 5.5 For problem (TNP) assume that

(i) g is continuous in K (A, c0) × {c0};
(i i) the set {(H, F, b) | 〈T (H, b), F − H〉 ≥ 0} is closed in A × A × {b0}.

Then the solution map S is usc at (c0, b0).

Proof It is derived from Lemma 5.4 and Theorem 2.2. ��
Corollary 5.6 Impose the assumptions of Corollary5.5 and the following conditions

(a) T is quasimonotone in K (A, c0);
(b) For each H ∈ S(c0, b0) and each H ′ ∈ S(c0, b0)\{H}, 〈T (H, b0), H ′ − H〉 > 0.

Then S is continuous at (c0, b0).

Proof It is clear from Theorem 4.1. ��
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Corollary 5.7 Let the assumptions of Corollary5.5 and the following conditions be satisfied

(a′) T is pseudomonotone in K (A, c0);
(b′) for H1, H2 in E(λ0), if 〈T (H1, b0), H2 − H1〉 = 0 then H2 = H1;
(c′) 〈T (H1, b0), H2 − H1〉 ≥ 0 for all H1, H2 in S(c0, b0).

Proof It is a direct consequence of Theorem 4.2. ��
Remark 5.2 Corollary 5.7 improves Theorem 4.1 of [20], since here (c′) needs to be fulfilled
only on S(c0, b0) and assumption (ii) is weaker than the continuity assumption of T required
in this theorem. Corollaries 5.5 and 5.6 are new. We note further that the results in Sect. 5.1
can be applied for (TNP), but Theorems 3.1–3.3 in [18] cannot, since assumption (iii) in
these theorems is not fulfilled in this case.
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